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Novel View Synthesis Of Transparent Object From a Single Image
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Abstract
We propose a method for converting a single image of a transparent object into multi-view photo that enables users observing
the object from multiple new angles, without inputting any 3D shape. The complex light paths formed by refraction and reflection
makes it challenging to compute the lighting effects of transparent objects from a new angle. We construct an encoder–decoder
network for normal reconstruction and texture extraction, which enables synthesizing novel views of transparent object from a set
of new views and new environment maps using only one RGB image. By simultaneously considering the optical transmission and
perspective variation, our network learns the characteristics of optical transmission and the change of perspective as guidance
to the conversion from RGB colours to surface normals. A texture extraction subnetwork is proposed to alleviate the contour
loss phenomenon during normal map generation. We test our method using 3D objects within and without our training data,
including real 3D objects that exists in our lab, and completely new environment maps that we take using our phones. The results
show that our method performs better on view synthesis of transparent objects in complex scenes using only a single-view image.

Keywords: image and video processing, view independent and 3D video, rendering, texture synthesis
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1. Introduction

Transparent objects are studied in both computer graphics and
computer vision such as segmentation [CHW18, KTR*20], recog-
nition [MNSiT13, CWY*20] and 3D reconstruction [HWL17,
LYC20]. In this work, we propose a system for new view synthe-
sis (NVS) of transparent objects. NVS generates images of a given
object from an unknown perspective [WGSJ20, MST*20, XBS*19]
which enables many applications in 3D modelling, Augmented Re-
ality, image editing and 3D RGB visions. However, most of the ex-
isting view synthesis methods are designed for opaque objects. Our
system is specifically designed for transparent objects. According to
Snell’s law, when the viewing angle changes, the direction of the re-
fracted light on transparent objects also changes which introduces
pixels from unseen background locations onto the object surface.
This fundamental difference against opaque object makes transpar-
ent object NVS a difficult problem.

Our goal is to synthesize novel views of transparent objects in
complex and real scenes. To this aim, we propose an encoder–
decoder network based on normal reconstruction and texture extrac-
tion to solve the problem of view synthesis from a single transparent
object image. Ourmethod is useful for creating realistic images with

parallax display. Figure 1 shows some outputs of our method. The
technical contributions of our work are fourfold:

• Our work is the first one to synthesize novel views of transparent
object using only a single input RGB image. Both the perspectives
and background environment can be changed.

• We construct a complex deep neural network that simulates the ef-
fects of optical transmission and perspective transformation from
new view angles. The network learns the characteristics of optical
transmission and perspective conversion from the transfer map-
pings of both RGB-to-normal and normal-to-normal due to the
change of perspectives through an encoder–decoder network.

• We specifically design a texture extractor sub-network based on
VGG19[SZ14] to improve the quality of the generated normal
maps by reducing contour and line feature losses of the fore-
ground 3D transparent objects. The extracted texture features are
evidently helpful for obtaining a better normal map of transparent
objects.

• We build a novel dataset of multi-view images of various trans-
parent objects in complex daily scenes. This dataset contains the
rendered images of many 3D objects with various shapes from a
series of varying viewpoints. Taking a certain fixed line of sight as
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Figure 1: We propose a method to synthesize a sequence of new views of a transparent object given a single image of this object as input.
We construct an encoder–decoder networks to achieve image-based normal reconstruction and texture extraction. Given an input image, our
approach can generate new images of transparent object with new perspectives (a)–(c) and new environment maps views (e)–(g), given its
corresponding object mask.

Figure 2: Our framework for view synthesis of transparent object. The whole method is divided into three steps: S1 normal reconstruction,
S2 normal prediction and rendering.

the axis, the range of the angles is from −9◦ to 9◦, interval being
1◦.

2. Related Work

NVS is a long-standing problem at the intersection of computer
graphics and computer vision. Main differences between existing
works are whether they input multiple perspectives or a single per-
spective image, and whether they have additional 3D features such

as depth maps, normal maps or other 2D/3D semantic information.
There exists four types of methods on this problem.

Multi-view stereo. The 1st type ofmethods usemultiple perspec-
tives of a 3D scene to reconstruct its 3D model, and then generate a
new view from a given viewpoint [FWZ05,MST*20, KLS*13]. The
advantage of these methods is that more viewing angles reduce the
occluded area and simplify the difficulty of 3D modelling. DNNs
are trained to learn depth or other 3D semantic information to gen-
erate a target 3Dmodel[KLS*13, STB*19]. Li et al. [LYC20] learns
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Figure 3: The network architecture for module S1: normal recon-
struction. It uses the transparent object RGB image plus its cor-
responding object mask image as input to predict object normals
N1 and N2. The number of output channels of encoder layer is
(64,64,256,256,512,512). If combined with subsequent texture fea-
tures or the variation of viewing angle data, the number of input
channels in the second layer is 128.

Figure 4: The illustration of the light transmission. N1and N2 are
the normals of light after being refracted and reflected by a trans-
parent object, P1 and P2 are the corresponding collision points.

the three-dimensional parallax features between different views and
normal maps to reconstruct the 3D shape of transparent objects.
Hedman and Kopf [HK18] learn the implicit voxel representation
of target object given a number of training views and generate a
new view of the object in test. Recent studies [STB*19, ZTF*18,
MSOC*19, PYY*17] present wonderful effects on the view syn-
thesis of real scenes. Alex Yu et al. [AYTK20] propose pixelNeRF,
an improved NeRF based on a fully convolutional network to pre-
dict a continuous neural scene representation by one or few images,
which needs no additional 3D information.

Image inpainting. The 2nd type of methods are to supplement
the content of the occluded part with the context information of the
picture, similar to image inpainting[DSB*12, SSKH20, PKD*16,
HKAK14]. Shih et al. [SSKH20] input an RGB-D image to estimate
layered depth image (LDI), use spatial context perception to syn-
thesize new local colour and depth content into the occluded area.
CNNs are often used to fill holes in irregular objects and predict the
outline of the occluded area and finally estimate colour information
of the area. However, when encountering transparent objects where
the lighting effect on their surface drastically change when viewing
direction changes, identifying holes and filling the occluded area
become unreliable.

End-to-end depth estimation. The 3rd type method estimates
the depth map of the scene for view synthesis. Recent methods
[SMP*20, TGF*18, SRSF19, NMYL19] recover the depth map
from a single RGB image to construct the 3D representation of the
scene, thus can generate new views by directly rendering. Tucker
and Snavely [TS20] generate a multi-plane image (MPI) from a sin-
gle image input by training a DNN and synthetizing scale invariant

Figure 5: Visual comparison of our network trained with 2-Bounce
3D models only against with full dataset.

Figure 6: 3D models in our dataset.

view with sparse point sets in training data. Rockwell et al. [RFJ21]
proposes an approach that fuses 3D reasoning with autoregressive
modelling to outpaint large view changes in a 3D-consistent man-
ner, enabling scene synthesis. Rombach and Patrick Esser [RPE21]
introduce a transformer-based model using a global attention mech-
anism for implicitly learning long-range 3D correspondences be-
tween source and target views. In order to capture ambiguity in-
herent in predicting new views from a single image, a probabilistic
formulation is also applied. These methods perform well in depth
map estimation, but their generalization ability of the depth esti-
mation module across different background may be limited by the
training data. Besides, the commodity RGB-D camera often mal-
functions with transparent objects due to its TOFmechanism, hence
the wrong input depth, which leads to the failure of the transparent
object NVS.

Image-based rendering. The 4th type of methods are based on
image rendering, which synthesizes new views by estimating the

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



4 S. Zhou et al. / Novel View Synthesis of Transparent Object from a Single Image

Figure 7: The illustration of our dataset.

Table 1: Image quality and normal accuracy comparison of our network
trained with 2-Bounce 3D shapes only against with the full dataset. The data
here are statistic over all 2-Bounce 3D shapes.

Methods PSNR↑ SSIM↑ LPIPS↓ tN1mean(◦ ) ↓ tN2mean(◦ ) ↓
Ours 19.4330 0.9392 0.0538 5.9277 8.2884
2-Bounce 18.9217 0.9386 0.0557 5.9793 8.6447

normal or the refraction–reflection flow, i.e., the relationship be-
tween light and pixels in the scene [WGSJ20, ZTS*16, XYL*19,
HPP*18, WGL*18]. Wiles et al. [WGSJ20] input a single scene
image into an encoder–decoder network to learn the characteris-
tics of high-resolution point clouds to represent the 3D scene struc-
ture. In order to generate a new view from the point cloud, a high-
performance distinguishable point cloud renderer is used to render
from the target view. Zhou et al. [ZTS*16] estimate the target’s
refraction–reflection flow and attenuation function from a given per-
spective based on optical flows, so as to render a new perspective
scene. The theory of these methods is suitable for NVS of complex
scenes with transparent objects.

3. Method

Overview. The overall framework of our method is shown in
Figure 2. Our goal is to automatically generate novel views of trans-
parent objects in complex scenes given a single-view RGB image
of the objects. The first step is to use the input single view image to
reconstruct its surface normal map, shown as S1 in Figure 2. Here
we assume that the object segmentation mask is given manually by
the users or using existing techniques. Aiming at the problem of se-
rious contour loss in convolutional neural networks, we propose a
VGG19[SZ14]-based texture extractor to optimize the contour loss
during normal map generation, and use the extracted texture fea-
tures as the input to the previous step to obtain the better quality of
the transparent object normal map. In the second step shown as S2 in
Figure 2, because the transparent object changes its complex optical
path with the viewing in a highly non-linear way, we learn the light
transmission features between the new viewpoint and the normal
map through the neural network. In the third step, we calculate the
refracted and reflected light from the previously estimated normal
map according to Snell’s law, and then calculate the incoming radi-
ance of any complex environment map through bilinear sampling.

A simple local computation is executed to simulate the refraction
and reflection of transparent objects in the rendering process.

3.1. Normal reconstruction

Due to the complex optical transmission behaviours of transparent
objects, the network needs to learn the reflection and refraction char-
acteristics and contour features of transparent objects. We propose
an encoder–decoder network for reconstructing normal map, which
only uses a single RGB image to obtain the complex light trans-
mission effects of transparent objects, without performing complex
and time-consuming ray tracing. In other words, after accurately re-
constructing the normal map, we can directly calculate the direction
of the refracted light and the reflected light after the incident light
passes through the transparent object.The network architecture is
shown in Figure 3. The input of our network is an image I of a trans-
parent object with known refractive index (IoR), and the output is
two normal maps N1 and N2 (They are the normals of two contact
points P1 and P2 on which the incident light pass through a trans-
parent object, see Figure 4). Given the corresponding segmentation
mask M, we use the ground truth of N1, N2 and M for supervision
(denoted as Ngt

1 , N
gt
2 , M).The encoder–decoder network estimates

N1,N2 = S1(I,M) (1)

The loss function Lin is defined as the L2 loss between N1 and N2:

Lin = ||Ngt
1 − N1||22 + ||Ngt

2 − N2||22. (2)

3.2. Texture extractor

Because the spatial transformation invariance of CNN makes it in-
sensitive to edge details, it is difficult to capture the detailed infor-
mation of the normal map. This often results in the significant loss of
the details of the normal map especially at the contours and silhou-
ette lines of the object[CPK*17]. Aiming at this problem, we refer to
the idea of Refs. [GEB15, ZWLQ19] and propose a VGG19[SZ14]-
based texture feature extractor to effectively alleviate the contour
loss during normal map generation, and use the extracted texture
features as the input of the previous stage, producing normal maps
of transparent objects with much better quality. The principle of our
texture extractor is to fully exploit the object’s texture detail in the
input image I to compensate for the detailed information about the
generated normal map. We use the pre-trained VGG19 model pro-
posed by Pytorch[PGM*19] to learn the texture features (denoted
as TF) of the corresponding transparent objects in Section 3.1, and
combine image I and mask M to send them to the encoding layer,
to convert them into the latent feature space. The features after
encoding are used as the input of the decoder to predict normal
maps. With the texture extractor, our normal reconstruction can be
reformulated as

N1,N2 = S1(I,M,TF )

where TF = VGG19(I,M)
(3)

3.3. Normals and perspective changes

The key to S2 is to learn the relationship between normals and
perspective changes in deep features through neural networks.
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Figure 8: Visual comparison of our results with CLDI[SSKH20], Synsin[WGSJ20] and VAF[ZTS*16]. GT means ground truth. Frame 0◦ is
the input view. All methods use the same camera parameter and input view. In general, our results have more accurate lighting changes and
texture details which are similar to the ground truth. Please refer to our webpage to see more comparison results in GIF format.

Existing works [SSKH20, ZTS*16] for view synthesis often di-
rectly operate in the image pixel space, using techniques such as
image inpainting, without recomputing the actual lighting effects
of the object. These methods can not be applied onto transparent
objects due to the complex light path formed by the refraction
and reflection. For our cases, it is difficult to directly estimate the

normal map of the new viewpoint from the RGB colour space,
which is essential for generating realistic high-quality scene images
of the new viewpoint. Therefore, we do not directly learn the
mapping from the feature changes of the image I to the normal map
of the new viewpoint. Instead, we first estimate the normal map of
the transparent object under the initial viewpoint, and then learn
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Figure 9: Visual comparison with or without texture extractor. (c)
and (f) shows normal maps generated without extracting the texture
feature in the network. The texture extractor lead to better visual
quality and more accurate normal map details.

Figure 10: Visual comparison of generated normal maps tN1/tN2

using our whole network S1 + S2 against using the ground truth
N1/N2 and S2 step only.

the mapping between normal maps with regard to the changes of
perspectives.

We define viewpoint data as a 3×3 matrix, where the 1st, 2nd
and the 3rd row are the eye position Y , centre point C and an up
vector U , respectively. C is the centre point of the 3D object. Q is
on an observation circle lying approximately parallel to the ground,
whose centre is C and radius = 3. U is perpendicular to the plane
circle Q belongs to. We sample 19 eye positions locating uniformly
on circle Q from −9◦ to 9◦ to synthesize 19 continuous new views.

Given an initial view point vs of the image I and a target view
point vt , we need to generate a synthesized image of transparent
objects from the target view point vt . We use a convolutional net-
work layer to learn the spatial change features between vs and vt ,
and combine them with the features of the predicted normal maps
N1 and N2 learned by the encoder layer of in Section 3.1. In detail,
we concatenate the input vs and the target vt to be a 6×3 viewpoint
change matrix, and convolute it to be a channel-64 layer and then

Table 2: Quantitative comparison.

Methods PSNR↑ SSIM↑ LPIPS↓
VAF 13.777521 0.469289 0.387784
CLDI 15.449004 0.67885 0.268121
Synsin 20.954771 0.90608 0.186442
Ours-withoutTF 18.325105 0.749121 0.257429
Ours 20.799537 0.945257 0.147385

concatenate it with the 2nd normal feature layer to be a channel-128
mixed feature layer. For all of our training data, we set vs is from the
view of 0◦. Different from VAF [ZTS*16], we input this viewpoint
change at a relatively earlier stage. The mixed features are used as
the input of the decoder to predict the normal maps tN1 and tN2 of
the new view. We use the ground-truth tNgt

1 , tN
gt
2 shape for super-

vision of tN1 and tN2. The network architecture in this section is
similar to the network architecture based on Section 3.1.

tN1, tN2 = S2(N1,N2, vs, vt ) (4)

The loss function Lnn is the L2 loss for N1 and N2.

Lnn = ||tNgt
1 − tN1||22 + ||tNgt

2 − tN2||22 (5)

3.4. Rendering layer

We use the rendering module proposed by Refs. [LSR*20, LYC20]
to achieve the rendering of a new view of transparent objects, and
simulate the refraction and reflection of transparent objects in the
rendering process through a non-iterative local computation. Given
a new viewpoint vt and a scene environment map E (an arbitrary
known and distant environment map). First as shown in Figure 4,
the refracted and reflected rays r1, r2 are calculated from the previ-
ously estimated normal map according to Snell’s law, and then r1, r2
are converted from the camera coordinate system to the world coor-
dinate system according to the new viewpoint. Second, the incom-
ing radiance r of the environment map E is calculated via bilinear
sampling to obtain the pixel value. After the camera calibration, a
reflection layer I1 and refraction layer I2 of the new views are gener-
ated based on the incoming light direction. Due to the occurrence of
total internal reflection, some light may not reach the environment
map after it bounces again after entering the transparent object. All
of these unreachable pixels are recorded by the rendering layer onto
a binary maskMerr, which is discarded since we do not consider any
total internal reflection. The rendering layer obtain a new view im-
age I0 of the transparent object by adding reflection and refraction.

I1, I2,Merr = RenderLayer(E, tN1, tN2) (6)

I0 = I1 + I2 (7)

The difference between the corresponding new perspective ground-
truth image Igt and the generated image I0 is the rendering loss Lr,
we use the rendering loss Lr as an extra supervision:

Lr = |Igt − I0| �M (8)

3.5. Training

Training objective. Our network uses three loss functions for the
three stages, respectively: the first one is a L2 loss Lin computing a
conversion error from RGB pixel to its corresponding normal, the
second one is a L2 loss Lnn computing normal vector difference be-
tween the new viewpoint and the original viewpoint, the last one is
render loss Lr computing difference between the generated and tar-
get image. The total loss is defined as : L = λ1Lin + λ2Lnn + λ3Lr.
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Table 3: In normal reconstruction S1 in Figure 2, using the texture extractor as guidance improves the results.

Category Ours Ours-withoutTF
PSNR↑ SSIM↑ LPIPS↓ N1mean(◦ ) ↓ N2mean(◦ ) ↓ PSNR↑ SSIM↑ LPIPS↓ N1mean(◦ ) ↓ N2mean(◦ ) ↓

Airplane 32.5895 0.9823 0.0122 2.4860 6.6173 21.6490 0.9452 0.0492 9.1263 11.2179
Bathhub 27.4386 0.9466 0.0439 2.1634 8.3368 18.7978 0.8882 0.0983 5.8704 11.4328
Car 24.3677 0.9295 0.0655 3.4358 6.5170 20.0773 0.8956 0.0931 5.6944 9.3478
Chair 25.9679 0.9493 0.0376 3.0472 6.1562 18.6667 0.8954 0.0877 8.3584 11.5233
Faucet 30.3462 0.9790 0.0168 2.9659 5.2854 21.8057 0.9454 0.0453 8.5399 9.9096
Jar 29.1889 0.9671 0.0302 2.2816 5.8252 23.6336 0.9438 0.0412 4.5107 7.5939
Lamp 31.3621 0.9763 0.0205 2.5172 7.7641 24.3494 0.9545 0.0366 6.3432 10.7739
Cellphone 30.7037 0.9779 0.0214 2.4371 6.3997 19.5175 0.9317 0.0628 9.7623 14.7964
Vessel 27.9002 0.9659 0.0287 3.1224 8.4838 20.3468 0.9286 0.0655 8.2276 12.5942
Irregularly shaped 33.3888 0.9796 0.0190 2.1099 3.5423 21.0715 0.9365 0.0458 8.3731 10.3968

Figure 11: Visual comparison of generated normal maps tN1/tN2 over different angles from −9◦ to 9◦, using our whole network S1 + S2
against the ground truth tN1/tN2 directly obtained from the 3D object normal maps.

Training details. The models are trained with the Adam opti-
miser using a 10−4 learning rate for the encoder and decoder, and
momentum parameters (0.5,0.9). We have the learning rate every
50 epochs. λ1 = 1, λ2 = 1, λ3=1. All networks are trained over 200
epochs. We implement our models in PyTorch [PGM*19] and take
2 days to train on 1 NVIDIA GeForce RTX 3090 GPU.

4. Experiments

Dataset. Because there is no open source dataset dedicated to the
view synthesis of transparent objects in existing works, we need to

create a synthetic dataset to evaluate our method. The first step is to
collect a set of environment maps of complex daily scenes. With the
support of the author in Gardner et al. [GSY*17], we obtain 2233
HDR panoramic pictures, from which we randomly select 1449
scene pictures to form our training set, and use the rest as our test
sets. The second step is to collect transparent objects. As shown in
Figure 5, we collect nine types of models from ShapeNet[CFG*15],
which are airplane, bathtub, car, chair, faucet, jar, lamp, cellphone,
vessel (including complex surfaces with holes and large concave
areas). For each category, 125 models are included, 100 of which
are used in the training set and the rest 25 of them are used in the
test set. In addition, to prove generalization ability of our model
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Table 4: Comparing view synthesis performance between left: using S1 + S2 and right: using the ground truth N1/N2+ S2. As shown in the table, the quality
of synthesis result of S1 + S2 is almost identical to S2 only. This shows that our normal reconstruction step S1 can reliably reconstruct normal maps of the 3D
object from the input image.

Category S1 + S2 S2 only
PSNR↑ SSIM↑ LPIPS↓ tN1mean(◦ ) ↓ tN2mean(◦ ) ↓ PSNR↑ SSIM↑ LPIPS↓ tN1mean(◦ ) ↓ tN2mean(◦ ) ↓

Airplane 23.6507 0.9594 0.0480 10.4435 12.3500 23.3725 0.9589 0.0474 10.2295 11.7814
Bathhub 20.2473 0.9086 0.1073 5.7995 11.5231 18.7737 0.8999 0.1146 5.8442 11.3736
Car 18.0402 0.8861 0.1109 5.9644 10.1538 18.5194 0.8912 0.0981 5.5936 9.1842
Chair 20.6813 0.9174 0.0904 8.2015 11.1875 20.0987 0.9151 0.0906 8.0313 10.8661
Faucet 22.0330 0.9439 0.0581 8.6676 10.5129 22.5703 0.9473 0.0518 7.9008 9.3033
Jar 19.5120 0.9104 0.1015 4.8007 9.5713 21.2901 0.9242 0.0834 3.4041 6.6167
Lamp 23.2461 0.9473 0.0619 6.0039 11.0784 22.7644 0.9465 0.0599 5.3096 10.2393
Cellphone 21.8002 0.9507 0.0588 7.7535 13.9678 22.6564 0.9552 0.0528 7.9470 13.3464
Vessel 21.3644 0.9403 0.0674 8.9847 12.9352 20.0495 0.9323 0.0721 8.5728 12.6111
Irregularly shaped 21.6182 0.9424 0.0613 5.9292 8.2836 22.8810 0.9495 0.0480 2.7686 3.5344

Table 5: Final result quality over all 3D object types.

Angel PSNR↑ SSIM↑ LPIPS↓ tN1mean(◦ ) ↓ tN2mean(◦ ) ↓
−9◦ 23.4992 0.9228 0.0689 8.4473 12.0863
−6◦ 23.6783 0.9257 0.0667 6.9529 10.9429
−3◦ 24.0611 0.9291 0.0642 5.6860 9.8890
0◦ 24.2164 0.9312 0.0634 4.1596 8.6676
3◦ 23.9861 0.9293 0.0656 5.9192 10.1536
6◦ 23.7884 0.9271 0.0684 7.6611 11.5724
9◦ 23.4870 0.9244 0.0718 9.0351 12.6357

Table 6: Final result quality on 2-Bounce 3D shapes.

Angel PSNR↑ SSIM↑ LPIPS↓ tN1mean(◦ ) ↓ tN2mean(◦ ) ↓
−9◦ 19.3504 0.9194 0.0582 6.2791 8.5828
−6◦ 19.5326 0.9212 0.0563 5.9405 8.2997
−3◦ 19.7247 0.9231 0.0550 5.6236 7.9925
0◦ 19.9327 0.9250 0.0541 5.3022 7.7019
3◦ 19.7583 0.9250 0.0551 5.5983 7.9907
6◦ 19.4203 0.9241 0.0562 5.9123 8.2959
9◦ 19.1846 0.9237 0.0570 6.2515 8.5855

and effectively apply it onto various 3D shapes, we randomly gen-
erate a class of irregularly shaped 3D models according to Li et al.
[LYC20]. The IoR of all shapes is set to 1.4723 according to the av-
erage real-world transparent object. The camera’s fov is 63.4149◦.
Assuming the camera is a perspective camera, the camera’s view-
point changes from −9◦ to 9◦ with 1◦ interval along circle Q, and
the resolution of the generated image is 480*360. Figure 6 shows
an example of our dataset. All the transparent objects in our dataset
are rendered using approach described in Li et al. [LYC20].

Note that in our training data, there is only a portion of the ir-
regular shape and the cellphone categories that strictly satisfy the
2-Bounce property, roughly 10% of the entire 3D shapes. There are
many 3D objects that do not satisfy the 2-Bounce property due to
their complex, concave or even hollow shapes. However, we still

include these complex and concave 3D shapes and use the entire
3D dataset to train our networks. This is because we find out that
by doing this, our network can obtain much better generalization
ability, not just on our test data, but also on those real transparent
objects we use in Figure 7 . Using the entire 3D shape to train our
network is significantly better than just using 2-Bounce 3D objects.
The verification results are shown in Table 1 and Figure 8. The main
reason behind this is also very straightforward: A larger and more
versatile 3D shape training set enables our network to capture gen-
eral knowledge about the silhouette, curvature and orientation from
many complex 3D surfaces, not just simple convex shapes.

Metrics. We use a variety of evaluation indicators to measure
the quality of the synthesized views of transparent objects, namely
PSNR, SSIM and perceptual similarity (Zhang et al. [ZIE*18] has
shown that perceptual similarity is an effective method for compar-
ing image similarity). In addition, for the prediction accuracy of the
normal map, we also added the indicator of the average angle error
of the normal direction.

4.1. Visual comparisons

We compare our proposed model with Synsin[WGSJ20],
CLDI[SSKH20] and VAF[ZTS*16] on the above dataset. For
VAF[ZTS*16], we re-trained their networks using our dataset.
For Synsin[WGSJ20] and CLDI[SSKH20], we directly use their
released pre-trained networks. For all methods, we use the same
input view image and camera parameters to synthesize new views
of the same 19 target perspectives. Figure 9 shows the generated
result of our model and other models. It can be seen from the
figure that the pattern formed on the surface of a transparent object
varies with the viewing angle. Our method can correctly capture
the light changes and appearance of transparent objects under
new perspectives, while the other three methods only consider the
relationship between the depth map and the pixel changes, resulting
in the transparent object surface pixels only learning information
in the RGB context. CLDI[SSKH20] and VAF[ZTS*16] produce
artifacts around the edge contour of transparent objects.
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Figure 12: Our results of increasing IoR from 1.2 to 1.8. Please refer to our webpage for more results of IoR changes in GIF format.

4.2. Quantitative comparisons

To perform quantitative comparison with Synsin[WGSJ20],
CLDI[SSKH20] and VAF[ZTS*16], we use SSIM, PSNR and
LPIPS[ZIE*18] metrics between the synthesized image and the
ground truth image of the target view to quantify the performance
of each model. Because these three existing methods perform the
synthesis process over the whole image space and do not use any
segmentation of the foreground object, we can only compute these
quality metrics over the full image space for both their methods
and our method. Based on the same reason, their results may
contain noticeable background distortions especially when the
view change is large, we consider it is reasonable to only compare
a narrow range of views from −3◦ to 3◦ without 0◦, six views
in total. Specifically, we use all of our 250 3D models from our
10 types mentioned in Section 4, along with various complex
background environment scenes, and for each 3D model, we form
six test pairs each of which the input view is 0◦ and the target views
are Tv ∈ {−3◦,−2◦, −1◦, 1◦, 2◦, 3◦}. We use the same camera
parameters and input views for all methods in the quantitative com-
parison. In Figure 9, we show the full 19 frames of four examples
of this comparison.

We report the evaluation results in Table 2. For all three met-
rics, our results outperform these baselines except only in PSNR
our results are slightly worse than Synsin[WGSJ20] by 0.74%. Our
method is evidently better in SSIM and LPIPS. From both the static
frames in Figure 9 and the GIF results on our webpage, it is also
demonstrated that our results have better lighting and textural cor-
rectness, perceptual quality and structural integrity of the synthe-
sized transparent objects. Besides, in Table 2, we also conduct abla-
tion studies of our proposed individual network components which
are detailed in the next Section 4.4.

4.3. Ablation study

In order to see the influences of our proposed components on the
final result quality, we conduct the following ablation studies.

First, we verify the influence of the texture extractor in step S1 on
the quality of the reconstructed normals of transparent objects. The

visualization results of these studies are shown in Figure 10. Using
our test set, we also compute PSNR, SSIM, LPIPS and the average
angle bias in the normal direction to evaluate the difference between
the generated normal map and the ground truth normal map. We
report the evaluation results in Table 3. The results show that our
texture extractor brings improvement in PSNR, SSIM and LPIPS,
especially in PSRN. When estimating the normal direction, the av-
erage error is reduced by approximately 4.824◦. Besides, the loss
curves in the supplementary files also show that with the texture
extractor, our network has lower losses especially during the first
50 epochs.

Then, we test the accuracy of our step S1 and the correctness of
combining S1 with S2. Within our test set, we replace the recon-
structed normalsN1/N2 with the ground truthN1/N2, and input them
into our step S2. The visualization results are shown in Figure 11,
and the image quality measurements and normal accuracy metrics
are listed in Table 4. Comparing the left and the right of the table
suggests that our step S1 can faithfully recover normals from a single
input image and the quality of our final view synthesis results is only
slightly worse than inputting ground truth N1/N2 into step S2. In the
categories of chair, bathtub and airplane, our network even gives
higher score on PSNR and SSIM. However, a row-by-row compari-
son of the table shows that NVS results of objects with large hollow
shapes (bath tub) and complex structure and severe self-occlusions
(chair and airplane) has lower quality, this is because our renderer
is limited by 2-Bounce assumption.

We next examine how image quality varies with viewing an-
gles. We test our method on all 3D types in our test set and on the
2-Bounce 3D shape subset, and the evaluation results are shown
in Tables 5 and 6, respectively. Both of these two tables show
that the quality of the synthesized new viewing angle image de-
creases very slightly with the increase of the viewing angle vari-
ation. Zero degrees is the best, and 9◦ and −9◦ are the worst. But
the quality of the synthetic results are acceptable without any visible
differences throughout all viewing angles. For instance, on the full
3D model, the drop rate is only 3.02%, while on the 2-Bounce
model, it is 3.75%. In Figure 12, we show both the ground truth
tN1/tN2 and their generated version by our method using an exam-
ple from the faucet category.
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Figure 13: View synthesis results using real transparent objects.
Please refer to our webpage for GIF results. (a) Real objects. (b)
New environment maps, the first is a photo of our lab. (c, d) The
first column is the input image, the masks are manually labelled. (c)
2-Bounce objects. (d) Objects that are not 2-Bounce.

Figure 14: The rendering error of different IoR on the test set.

4.4. Index of refraction

We also report a sensitivity analysis on the influence of IoR on the
render result. We use the IoR in the range (1.2, 1.8) to test our
network, and compare the generated image with the ground truth.
Figure 13 shows transparent objects rendered under different IoRs,

Figure 15: One of our synthesized view showing texture distortion.

Figure 14 shows the rendering error of different IoRs on the test set.
It can be seen that the closer the IoR of the transparent object is to
1.4723, the smaller the rendering error. This is because our dataset
uniformly sets the IoR of transparent objects to 1.4723, which is in
line with our real-world expectations. At the same time, the render-
ing error generated by IoRs in this range only slightly changes. This
suggests that our method can effectively adjust the IoR for any given
3D model and perspective.

4.5. Real transparent objects and environment maps

We test our method using photos of the real 3D transparent objects
such as glass cup and trophy as displayed in Figure 7a. Here we also
use some completely new environment maps that are not from our
training dataset, some of them are downloaded from the Internet,
and the others are made from the photos we take in our lab or cer-
tain outdoor places as shown in Figure 7b. The results are shown in
Figure 7c. Note here we manually mask out the transparent objects
before inputting them into our networks.

5. Limitation

Even though we do not require inputting 3D shape, it is still neces-
sary to input segmentation masks when generating novel views for
real 3D objects from real photos. Our loss function only penalizes
the point-wise differences between the ground truth normal and the
predicted normal, this may lead to noticeable distortion in the re-
sults, see Figure 15. Due to GPU memory limit, it is currently in-
applicable for us to induce more geometric constraints such smooth
error for neighbouring normal vectors or other surface-based curva-
ture guidance. In our experiments, a single RTX-3090 GPU can not
afford the peak memory consumption when such geometric con-
straints are added. Besides, our method currently does not handle
total internal reflection. Furthermore, we assume that objects are to-
tally smooth and homogeneous with uniform IOR, and our networks
are entirely trained with synthetic dataset.

6. Conclusion

In this paper, we introduce a method to synthesize novel views from
a single input view. Our core technique is to consider light transmis-
sion characteristics and viewing angle-related effects, and learn the
relationship between light and pixels under new perspectives. Ex-
perimental results show that our method can better capture the light
changes and appearance of transparent objects under new viewing
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angles. Currently our method only consider the view synthesis prob-
lem of a single transparent object in a complex scene, we will con-
sider the case of multiple transparent objects in the future.

Acknowledgements

This work was funded by the National Science Foundation of China
No. 62076090, Huxiang Youth Talent Support Program, Hunan
Province China, No. 2020RC3014, Natural Science Foundation of
Hunan Province, China, No. 2022JJ30173. We thank Prof. Jean-
François Lalonde for providing us datasets. We Thank Lei Xia for
helping with experiments.

References

[AYTK20] Alex Yu, Vickie Ye, Matthew Tancik, Angjoo
Kanazawa: pixelNeRF: Neural Radiance Fields From One or
Few Images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, IEEE.
4578–4587.

[CFG*15] Chang A. X., Funkhouser T., Guibas L., Hanrahan
P., Huang Q., Li Z., Savarese S., Savva M., Song S., Su H.,
Xiao J., Yi L., Yu F.: ShapeNet: An information-rich 3D model
repository. arXiv preprint arXiv:1512.03012 (2015).

[CHW18] Chen G., Han K., Wong K.: TOM-Net: Learning trans-
parent object matting from a single image. In Proceedings of
the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2018), pp. 9233–9241.

[CPK*17] ChenL. C., PapandreouG., Kokkinos I.,MurphyK.,
YuilleA. L.: DeepLab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs.
IEEE Transactions on Pattern Analysis andMachine Intelligence
40, 4 (2017), 834–848.

[CWY*20] Chao C. K., Wu S. Y., Yan Z. T., Tsai M. L., Hsu
C. C., Raihany U., Peng C. Y.: Robotic arm combined with the
visual images in a transparent object recognition. In Proceedings
of the 2020 International Symposium on Computer, Consumer
and Control (IS3C) (2020), pp. 126–129.

[DSB*12] Darabi S., Shechtman E., Barnes C., Goldman D.
B., Sen P.: Image melding: Combining inconsistent images using
patch-based synthesis. ACM Transactions on Graphics (TOG)
31, 4 (2012), 1–10.

[FWZ05] Fitzgibbon A., Wexler Y., Zisserman A.: Image-
based rendering using image-based priors. International Journal
of Computer Vision 63, 2 (2005), 141–151.

[GEB15] Gatys, L. A.; Ecker, A. S.; Bethge, M. Texture synthe-
sis using convolutional neural networks. In: Proceedings of the
28th International Conference on Neural Information Processing
Systems, 262–270, 2015.

[GSY*17] Gardner, M.A., Sunkavalli, K., Yumer, E., Shen,
X., Gambaretto, E., Gagn´e, C., Lalonde, J.F.: Learning to

predict indoor illumination from a single image. ACM Transac-
tions on Graphics 36(6), 1–14, 2017.

[HK18] Hedman P., Kopf J.: Instant 3D photography. ACM Trans-
actions on Graphics (TOG) 37, 4 (2018), 1–12.

[HKAK14] Huang J. B., Kang S. B., Ahuja N., Kopf J.: Image
completion using planar structure guidance. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 1–10.

[HPP*18] HedmanP., Philip J., Price T., Frahm J.M., Drettakis
G., Brostow G.: Deep blending for free-viewpoint image-based
rendering. ACM Transactions on Graphics (TOG) 37, 6 (2018),
1–15.

[HWL17] Han K., Wong K., Liu M.: Dense reconstruction of
transparent objects by altering incident light paths through re-
fraction. International Journal of Computer Vision 126 (2017),
460–475.

[KLS*13] Kopf J., Langguth F., Scharstein D., Szeliski
R., Goesele M.: Image-based rendering in the gradient do-
main. ACM Transactions on Graphics (TOG) 32, 6 (2013),
1–9.

[KTR*20] Kalra A., Taamazyan V., Rao S. K., Venkataraman
K., RaskarR., Kadambi A.: Deep polarization cues for transpar-
ent object segmentation. In Proceedings of the 2020 IEEE/CVF
Conference onComputer Vision and Pattern Recognition (CVPR)
(2020), pp. 8599–8608.

[LSR*20] Li Z., Shafiei M., Ramamoorthi R., Sunkavalli
K., Chandraker M.: Inverse rendering for complex indoor
scenes: Shape, spatially-varying lighting and SVBRDF from a
single image. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2020), pp. 2475–
2484.

[LYC20] Li Z., Yeh Y. Y., Chandraker M.: Through the looking
glass: Neural 3D reconstruction of transparent shapes. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2020), pp. 1262–1271.

[MNSiT13] Maeno K., Nagahara H., Shimada A., ichiro
Taniguchi R.: Light field distortion feature for transparent ob-
ject recognition. In Proceedings of the 2013 IEEE Conference
on Computer Vision and Pattern Recognition (2013), pp. 2786–
2793.

[MSOC*19] Mildenhall B., Srinivasan P. P., Ortiz-Cayon R.,
Kalantari N. K., Ramamoorthi R., Ng R., KarA.: Local light
field fusion: Practical view synthesis with prescriptive sampling
guidelines. ACM Transactions on Graphics (TOG) 38, 4 (2019),
1–14.

[MST*20] Mildenhall B., Srinivasan P. P., TancikM., Barron
J. T., Ramamoorthi R., Ng R.: NeRF: Representing scenes as
neural radiance fields for view synthesis. In Proceedings of the
European Conference on Computer Vision (2020), Springer, pp.
405–421.

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



12 S. Zhou et al. / Novel View Synthesis of Transparent Object from a Single Image

[NMYL19] Niklaus S., Mai L., Yang J., Liu F.: 3D Ken Burns ef-
fect from a single image. ACM Transactions on Graphics (TOG)
38, 6 (2019), 1–15.

[PGM*19] Paszke A., Gross S., Massa F., Lerer A., Bradbury
J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L.,
Desmaison A., Köpf A., Yang E., DeVito Z., Raison M., Te-
jani A., Chilamkurthy S., Steiner B., Fang L., Bai J., Chin-
tala S.: PyTorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Sys-
tems 32. Curran Associates, 2019: 8026–8037.

[PKD*16] PathakD., Krahenbuhl P., Donahue J., Darrell T.,
Efros A. A.: Context encoders: Feature learning by inpainting.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2016), pp. 2536–2544.

[PYY*17] Park E., Yang J., Yumer E., Ceylan D., Berg A. C.:
Transformation-grounded image generation network for novel
3D view synthesis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2017), pp. 3500–
3509.

[RFJ21] Rockwell C., Fouhey D. F., Johnson J.: PixelSynth:
Generating a 3D-consistent experience from a single image. In
Proceedings of the IEEE/CVF International Conference on Com-
puter Vision. 14104–14113.

[RPE21] Rombach, R, Esser, P and Ommer, B (2021). Geometry-
Free View Synthesis: Transformers and no 3D Priors. In Proceed-
ings of the Intl. Conf. on Computer Vision (ICCV).

[SMP*20] Sajjan S., Moore M., Pan M., Nagaraja G., Lee J.,
Zeng A., Song S.: Clear grasp: 3D shape estimation of transpar-
ent objects for manipulation. In Proceedings of the 2020 IEEE
International Conference on Robotics and Automation (ICRA)
(2020), IEEE, pp. 3634–3642.

[SRSF19] Shin D., Ren Z., Sudderth E. B., Fowlkes C. C.: 3D
scene reconstruction with multi-layer depth and epipolar trans-
formers. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (2019), pp. 2172–2182.

[SSKH20] Shih M. L., Su S. Y., Kopf J., Huang J. B.: 3D pho-
tography using context-aware layered depth inpainting. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2020), pp. 8028–8038.

[STB*19] Srinivasan P. P., Tucker R., Barron J. T., Ramamoor-
thi R., Ng R., Snavely N.: Pushing the boundaries of view
extrapolation with multiplane images. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (2019), pp. 175–184.

[SZ14] Simonyan K., Zisserman A.: Very deep convolutional net-
works for large-scale image recognition. 3rd International Con-
ference on Learning Representations (ICLR2015) (2014).

[TGF*18] Tulsiani S., Gupta S., Fouhey D. F., Efros A. A.,
Malik J.: Factoring shape, pose, and layout from the 2D image of
a 3d scene. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2018), pp. 302–310.

[TS20] Tucker R., Snavely N.: Single-view view synthesis with
multiplane images. arXiv preprint arXiv:2004.11364 (2020).

[WGL*18] Whelan T., Goesele M., Lovegrove S. J., Straub
J., Green S., Szeliski R., Butterfield S., Verma S., New-
combe R. A.: Reconstructing scenes with mirror and glass sur-
faces. ACM Transactions on Graphics 37, 4 (2018), 102.

[WGSJ20] Wiles O., Gkioxari G., Szeliski R., Johnson J.:
SynSin: End-to-end view synthesis from a single image. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2020), pp. 7467–7477.

[XBS*19] Xu Z., Bi S., Sunkavalli K., Hadap S., Su H., Ra-
mamoorthi R.: Deep view synthesis from sparse photometric
images. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–
13.

[XYL*19] Xiong W., Yu J., Lin Z., Yang J., Lu X., Barnes
C., Luo J.: Foreground-aware image inpainting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2019), pp. 5840–5848.

[ZIE*18] Zhang R., Isola P., Efros A. A., Shechtman E., Wang
O.: The unreasonable effectiveness of deep features as a percep-
tual metric. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2018), pp. 586–595.

[ZTF*18] Zhou T., Tucker R., Flynn J., Fyffe G., Snavely N.:
Stereo magnification: Learning view synthesis using multiplane
images. In Proceedings of the ACM SIGGRAPH 2018.

[ZTS*16] Zhou T., Tulsiani S., Sun W., Malik J., Efros A. A.:
View synthesis by appearance flow. In Proceedings of the Euro-
pean Conference on Computer Vision (2016), Springer, pp. 286–
301.

[ZWLQ19] Zhang Z., Wang Z., Lin Z., Qi H.: Image super-
resolution by neural texture transfer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (2019), pp. 7982–7991.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Data S1

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.


